Exponential Attractors for Parabolic Equations with Dynamic Boundary Conditions
نویسنده
چکیده
We study exponential attractors for semilinear parabolic equations with dynamic boundary conditions in bounded domains. First, we give the existence of the exponential attractor in L2(Ω) × L2(Γ) by proving that the corresponding semigroup satisfies the enhanced flattering property. Second, we apply asymptotic a priori estimate and obtain the exponential attractor in Lp(Ω) × L(Γ). Finally, we show the exponential attractor in (H1(Ω) ∩ Lp(Ω)) × L(Γ).
منابع مشابه
Uniform Exponential Attractors for a Singularly Perturbed Damped Wave Equation
Our aim in this article is to construct exponential attractors for singularly perturbed damped wave equations that are continuous with respect to the perturbation parameter. The main difficulty comes from the fact that the phase spaces for the perturbed and unperturbed equations are not the same; indeed, the limit equation is a (parabolic) reaction-diffusion equation. Therefore, previous constr...
متن کاملRobust Exponential Attractors for Coleman-gurtin Equations with Dynamic Boundary Conditions Possessing Memory
Well-posedness of generalized Coleman-Gurtin equations equipped with dynamic boundary conditions with memory was recently established by the author with C. G. Gal. In this article we report advances concerning the asymptotic behavior and stability of this heat transfer model. For the model under consideration, we obtain a family of exponential attractors that is robust/Hölder continuous with re...
متن کاملAttractors for Parabolic Equations with Nonlinear Boundary Conditions, Critical Exponents, and Singular Initial Data
متن کامل
Orbit equivalence of global attractors of semilinear parabolic di erential equations
We consider global attractors Af of dissipative parabolic equations ut = uxx + f(x; u; ux) on the unit interval 0 x 1 with Neumann boundary conditions. A permutation f is de ned by the two orderings of the set of (hyperbolic) equilibrium solutions ut 0 according to their respective values at the two boundary points x = 0 and x = 1: We prove that two global attractors, Af and Ag, are globally C0...
متن کاملOrbit Equivalence of Global Attractors of Semilinear Parabolic Differential Equations
We consider global attractors Af of dissipative parabolic equations ut = uxx + f(x, u, ux) on the unit interval 0 ≤ x ≤ 1 with Neumann boundary conditions. A permutation πf is defined by the two orderings of the set of (hyperbolic) equilibrium solutions ut ≡ 0 according to their respective values at the two boundary points x = 0 and x = 1. We prove that two global attractors, Af and Ag, are glo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013